

Ricerca di nuove risonanze che decadono in coppie di jet

<u>Federico Preiato</u> Università di Roma "La Sapienza" INFN, Sezione di Roma

101° Congresso Nazionale SIF 21 Settembre 2015 - Roma

Ricerca di risonanze

MODELLO STANDARD: numerose verifiche sperimentali, ma presenta alcuni limiti teorici —> Possibili scenari di **nuova fisica**.

Analisi semplice e potente: molti modelli teorici prevedono risonanze che decadono in coppie di jet:

- Quark eccitati → qg
- Gravitone → qq / gg

- Stringhe \rightarrow qg
- W', Z' \rightarrow qq

Ricerca a √s=13 TeV

- ➢ 2015 (Run 2)
 - Collisioni pp @13TeV
 - 42 pb⁻¹ di luminosità raccolti

Migliore sensibilità rispetto al Run 1 per $M_x > 5$ TeV

- ➢ 2012 (Run 1)
 - Collisioni pp @8TeV
 - 20 fb⁻¹ di luminosità raccolti

http://www.hep.ph.ic.ac.uk/~wstirlin/plots/lhclumi7813_2013_v1.pdf

Risultati del Run 1

Possibili zone di interesse intorno alle masse di 1.8 TeV e 3.6 TeV

Segnale e Fondo

Compact Muon Solenoid

Calibrazione dei jet

- Fondamentale per questa analisi
- Calorimetro elettromagnetico per calibrare il calorimetro adronico
- Esempio: fotone+jet
 - Bilanciamento in impulso trasverso

Spettro di massa

- Accordo tra i dati e il fit del fondo: Nessuna evidenza di risonanze che decadono in due jet
- L'analisi del Run 2 ha una sensibilità maggiore rispetto al Run 1 per masse > 5 TeV
- Evento con la massa più alta @5.4 TeV

Event display

- Massa invariante più alta raggiunta nel
 Run 2 = 5.4 TeV
- Massa invariante più alta raggiunta nel
 Run 1 = 5.1 TeV

Run 2 già con pochi dati ha una **sensibilità** maggiore rispetto al Run 1 per M > 5 TeV

Risultati del Run 2

- Limiti di esclusione sulla sezione d'urto e sulla massa invariante della risonanza
- Risultati per questi modelli teorici inclusi nei risultati del Run 1

Conclusioni

- > Presentati i primi risultati a \sqrt{s} = 13 TeV con l'esperimento CMS
- > Per ora nessuna evidenza di risonanze che decadono in coppie di jet
- Analisi del Run 2 con una luminosità integrata di 42 pb⁻¹ ha una maggiore sensibilità rispetto al Run 1 per masse maggiori di 5 TeV
- Ricerca di risonanze che decadono in coppie di jet ha un gran potenziale di scoperta di nuova fisica data l'elevata sensibilità già con i primi fb⁻¹ di dati a 13 TeV (con 3 fb⁻¹ sensibili a M > 1.5 TeV).

BACKUP

13TeV vs 8 TeV

Compact Muon Solenoid

TRACCIATORE

Ricostruzione di: tracce cariche nel tracciatore; vertici primari e secondari

3m 0m 1m 2m 4m 6m Kev: Muon Electron Charged Hadron (e.g. Pion) Neutral Hadron (e.g. Neutron) Photon 0 Tracker Electromagneti Calorimeter Hadron Superconducting Calorimeter Solenoid Iron return yoke interspersed Transverse slice with Muon chambers through CMS

CALORIMETRO ELETTROMAGNETICO

Fotoni rilasciano la loro energia nei cristalli del calorimetro elettromagnetico

CALORIMETRO ADRONICO

Adroni rilasciano energia sia nel calorimetro elettromagnetico che in quello adronico

CAMERE PER I MUONI

Misura di impulso dei muoni

Ricostruzione wide jet

- Usare i wide jets migliora la risoluzione sulla massa invariante dei due jet → include la radiazione di stato finale
- Algoritmo di clustering: PF antiKT con raggio del cono R=0.4 (Run2)
- Raggio del cono di costruzione del wide jet R=1.1
- Criteri di identificazione del jet basati su le frazioni di energia del jet
- Regione fiduciale: $|\eta| < 2.5$
- Non si usano jet con basso impulso trasverso: pT>30 GeV

Cinematica

Buon accordo tra i dati e la simulazione MonteCarlo

Topologia evento

Distribuzioni angolare caratteristiche di eventi con due jet

Modello del segnale

Modello del fondo

Fit ai dati con la parametrizzazione:

$$\frac{d\sigma}{dm(jj)} = \frac{p_0(1-x)^{p_1}}{x^{p_2}}$$

con $x = \frac{m(jj)}{\sqrt{s}}$

Dati ben descritti dalla parametrizzazione del fondo:

 χ^2 /ndf = 23.5/24

Spettro di massa

- Accordo tra i dati e il fit del fondo: Nessuna evidenza di risonanze che decadono in due jet
- Eccessi visti nel Run 1 @1.8TeV
 e @3.6 TeV (<~ 2 σ)
- L'analisi del Run 2 non è ancora sensibile al Run 1
 - Necessari ~400 pb⁻¹ per 3.6 TeV
 - Necessari ~3 fb⁻¹ per 1.8 TeV

Run 1 vs Run 2

Spettro di massa: ATLAS

- Accordo tra i dati e il fit del fondo: Nessuna evidenza di risonanze che decadono in due jet
- L'analisi del Run 2 ha una sensibilità maggiore rispetto al Run 1 per masse > 5 TeV
- Evento con la massa più alta @5.2 TeV

E in presenza di segnale?

- Confrontare la distribuzione angolare del picco con quella delle sideband
- Capire se il picco è una fluttuazione di QCD o un effetto sistematico o un segnale con una distribuzione angolare non-QCD
- Guardare gli altri canali di decadimento previsti dal modello. Ad esempio:
 - Iv / II per un W' o Z' di 1.8 TeV
 - qW, qZ, qγ per un q* di 3.6 TeV

